
AD At24 698 ACTIVE CONTO O0 0 INEAR PERIODIC SYSTEM WITH TWO /
UNSABLEMODES(U AIR FORCE INS 0F TECH
URGH OH PATTERSON AFB O H SCHOD 0LO ENGINEERING

UNCLASSIFED G E MYERS DEC 82 AFITGAE/AA/820-1 2 2/

MENMONEEhNONu
.hMhMhhhMMhhuE
EMMMhhhhhhhhhu
EhMhhhMhhEEMhE

* flf flf flfl lfl lflf EN



IIII2 .4 12-2

MICROCOPY RESOLUJTION TEST CHART
NATIONAL BUJREAU Of STANDARDS- I963-A



9-

~4 ~

j
~ ,~ .~

* ~ 1'

~

~

~ ~ -~ ~
~

-s"..
WL

* -~&~.~-;~- - ~~A4

I -~

p

7,

I

~ tV;;;.~II.~9 - B

~ZV ~- p1

. ,,~ >.

~



ACTIVE CONTROL OF LINEAR PERIODIC

SYSTEM WITH TWO UNSTABLE MODES

THESIS

by

Gregory E. Myers, B.S.E.

2nd Lt. USAF

LThis document has been appzoved
iot public zelease and sale; its
distribution is unlimited.

S-



AFIT/GAE/AA/82D-21

ACTIVE CONTROL OF LINEAR

PERIODIC SYSTEM

WITH TWO UNSTABLE MODES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University (ATC)

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Gregory E. Myers, B.S.E.

2Lt. USAF

Graduate Aerodynamics

December 1982

Approved for public release; distribution unlimited

-ow



PREFACE

This thesis is a continuation of the work done by Yeakel

in the control of linear periodic systems. While specific

cases are looked at in this study, the techniques are

applicable to linear periodic systems in general. This

field is just beginning to be explored in depth. With the

advent of computers to perform many of the tedious numerical

integrations the problem becomes workable. With this thesis

I hope to add one more building block to this field. More

work needs to be done before we can fully understand the

nature of periodic systems, and how to control them. By

filling in all of the bits and pieces, eventually the field

will be conquered.

Much of this thesis work was done on the computer, a tool

I was not completely comfortable with. I would like to thank

all the people who helped me understand the operation of the

computer system, especially Dr. William Wiesel, and Captain

Hugh Briggs. I would also like to thank the members of my

faculty board, Captain DeWispelare, Major Wallace, and Dr.

Wiesel. Most importantly I would like to thank my adviser

Dr. Robert Calico for the guidance and insight he has given

me this past year.
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ABSTRACT

'- The attitude of a spinning symmetric satellite in an

elliptical orbit was analyzed. The linearized equations

were formed from which the stability was determined using

Floquet theory. The majority of satellite configurations

examined exhibited two unstable modes. Control laws using

pole placement techniques were implemented which stabilized

the satellite. A scaler control provided stability but did

not allow for exact pole placement of the controlled system.

Multiple input control gave exact pole placement but required

complicated time dependent gains.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Since the beginning of space flight in the late 1950's

designers have been concerned with maintaining the attitude

of their satellite with respect to some fixed reference.

Today this is still a major concern, as the use of earth

orbiting satellites is vital not only for weather and

communications problems, but also for national security

interests. The need to keep an unmanned satellite "looking"

at a particular point on the earth's surface, whether it be

a storm front or a foreign military installation, is an

important problem facing satellite designers. Various methods

have been used in the past to achieve this "line of sight"

precision, involving both passive and active control mech-

anisms. For satellites in nearly circular orbits a gravity

gradient stabilization has been used. This method has many

restrictions on satellite design and also requires nearly

circular orbits. Gravity gradient stabilization yields very

low natural frequencies, and hence any disturbances take a

long time to die out; not a good condition for precision

serveillence. More active attitude control devises are used

such as magnetic torquers, mass movement and momentum exchange

devises, and jet thrusters. Each has its own advantages and

disadvantages depending on the mission reqirements. The most

important factor in selecting a control devise, and for the

entire satellite package, is weight. The lighter the overall
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system is, the higher orbit it can be put into, and the lonver

it will stay in space. Therefore the lighter the control

system the more weight is available for payload. The more

payload implies a higher degree of mission accomplishment or

sophistication.

One active control devise long employed is the gyroscope.

A gyroscope, havinq a large amount of angular momentum with

torque free motior, results in a nearly constant anffular

momentum vector. Thus it is ideal for an attitude reference

devise. Gyros have long been used for aircraft navigation

and so their use in spacecraft seemed natural. To simplify

the problem the idea became to make the entire satellite

gyroscopic by spinning it about some axis. As early as 1963

Kane and Shippy investigated the stability of a spinning

satellite in a circular orbit, (5;111). This yielded equations

which were nonlinear and nonautonomous. Later in 1966 Kane

and Barba investigated the problem of a symmetric satellite

in an elliptical orbit, spinning about its axis of inertial

symmetry, (4;402). Again the system was nonlinear and non-

autonomous.

In both cases the equations were linearized about an

equilibrium point giving linear equations with periodic

coefficients whose stability was checked using Floquet

theory. In the case of a satellite in an elliptical orbit

the stability was found to be dependent on the inertia prop-

erties, the orbit eccentricity, and the spin rate of the

satellite.



As the need for more precise line of sight capability has

increased, the use of gravity gradient stabilization and

other schemes overly restrictive of satellite design, has

become undesireable. Some sort of on board control system,

or autopilot is needed. For the case of the symmetric spin-

ning satellite in elliptical orbit, many of the satellite

configurations are inherently unstable. As the eccentricity

is increased more of the cases become unstable. A control

scheme needs to be implemented so that these unstable con-

figurations ean be made stable and thus operational. The

linearized system of equations describing this case (Kane and

Barba) have periodic coefficients and so classical control

techniques used for systems with constant coefficients are

not directly applicable and must be modified. Very little

work has been done on control of periodic systems. Shelton

developed a control scheme for periodic systems, in his thesis,

for a satellite in orbit about the earth moon Lagrange point

L4. (Ref;9) Yeakel used the same principles in developing a

control scheme for the case of an unsymmetric satellite in a

circular orbit, and a symmetric satellite in an elliptical

orbit. (Ref;11)

This control scheme involves transforming the state variables

to modal variables so the designer can look at the individual

modes and their respective stability. Control terms can then

be applied to the individual modes. The control terms are

based on feedback of the selected modes, modified by selected

gains. In Shelton's and Yeakel's work the controller was

3
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designed to stabilize a system where one mode was unstable.

Many of the cases presented in this study have two unstable

modes. This makes the control a more -:aplicated process due

to the coupling of the unstable modes. This results in

unpredictable results using the scaler control developed by

Shelton and Yeakel. The use of multiple input control for

a system with two unstable modes is therefore developed. This

control scheme gives predictable results, but has its own

special drawbacks, namely complicated gains.

This study addresses the case of a symmetric satellite in

an elliptical orbit, spinning about its axis of inertial

symmetry, where two modes are unstable. The stability is

dependent on the eccentricity, inertia properties, and the

spin rate of the satellite, and the majority of cases involve

two unstable modes. Thus the ability to adequately control

such a case is extremely important. It is the purpose of

this study to investigate both scaler control schemes and

multiple input control schemes in stabilizing such a system

with two unstable modes.
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CHAPTER 2

THEORY

In this chapter the equations of motion of an inertially

symmetric satellite in an elliptical orbit about the earth

are developed. The satellite is spinning about its axis of

inertial symmetry. Also the equations describing the attitude

motion of the satellite are presented. These attitude equa-

tions will be linearized about an equilibrium point to des-

cribe the system in a conventional linear form. The system

is time periodic due to the nature of the orbital motion,

therefore Floquet theory can be used to make a statement

about the stability of the attitude motion. An unstable

system can be made stable by inserting a feedback control term

in the model. This control term can either be scaler control

or multiple input control. Both cases are developed.

EQUATIONS OF MOTION

The development that follows is taken from Kane and Barba

(4;402). Two basic equations describe the trajectory of a

satellite in orbit about a spherically symmetric attracting

body. These equations are developed in any introductory

astrodynamics text (10;31). The equations are:

22 3

-r + - - 0 (2.1)2
r
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and,

Sr2 = a2n/1 - e 2  (2.2)

whe re

n = 21/T (2.3)

and where T is the period of the orbit. The orbital elements;

r,v,a, and e are shown in Figure 2.1;

A1

Figure 2.1 Elliptical Orbit Elements

The variables may be nondimensionalized by changing to a

new system such that:

= nt = _r (2.4)
a

By rearranging equation (2.2),

=a 2 n li - e2  25

r
substituting this into equation (2.1) gives;

4 2a 2

-a n2(1,,- e2 n a3 (.6

7 -- ' =  ot (2.4)

6
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Now using the nondimensional variables and denoting diff-

erentiation with respect to 7 by primes:

+ (e - ) + (2.7)

The initial conditions for this differential equation are

found by assuming the satellite starts at perigee, therefore;

= a(1 - e) rp = 0

or, (2.8)

'(o) = 1 - e r(o) = 0

Nondimensionalizing equation (2.5) gives;

S= - (2.9)

and,

pi t -2N/1 -e r' (2.10)r3

It is worth noting that r is a periodic function of r.

Now the equations to describe the attitude motion of the

satellite can be developed. First an orbital reference

frame A is defined. Frame A is such that A1 points outward

along the orbit radius r, A 2 is perpendicular to A1 in the

orbital plane such that at perigee the satellite is moving

only in tne positive A2 direction, and A3 is perpendicular

to both A1 and A2, pointing out of the orbital plane. A body

axis frame X is obtained by means of a 1-2-3 rotation through

7



the angles 01, 02, and 03. Since the satellite is assumed to

be inertially symmetric a nodal axis system C is introduced

which is obtained from A by means of a 1-2 rotation through

01 and 02. See Figure 2.2.

B3  A3

82
2

C3 X3

e03 B2 ,C

1)E 1'

AI , B1  02\

x1

Figure 2.2 1-2-3 Rotation

Expressing the inertial angular velocity components in the C

frame, including the orbital rate &A,;

W1 = ilcos# 2 - icosisin92

w2 = a2 + Psine1  (2.11)

w3 = i1sin02 + 93 + ;cos* 1osa2

The moment equation (7;468) gives;

R dIcBit+C ixt~I~~ (2.12)

with the applied moments being (4;403);

8



M =0
= 3E(I- J)sinO2 cosa2  (2.13)

M3 = 0

Now from Euler's equations;

l+(J - I M
a + ( ) i 3

aI + 12 (2.14)

a3 + ( IJ- )W1w2 =3

where the a's are the angular accelerations and the I's and

J's are defined from the mass moment of inertia matrix;

I'c 0 1 0] (2.15)
0 01

for a symmetric satellite. Defining an inertia parameter K

such that;

K - ---J-I(2.16) I

The inertia properties can be fully described in this one

parameter. The acceleration terms a i are found using the

equation;

d-:i d C-i- + Ci x Bi (2.17)

which given in component form are;

9



ai = -Vcos 1sine2 + i (  sine @I ln 2 - G2cosacosa 2 +i3 sine.)

1 2 1 1 12 2~ 12 2+ W ICosa 2 - il i2 sine 2 + i 2 3

a2 = Wsinl + &(Glcosel + 0 cosl sinO2 ) +92 - coSe 2

(2.18)

a3 = P coselcos02 - O#sin$ 1osG2 - 2 cs#Isin02 +

ii sinG2 + e8e 2 cosD2 + W3

Now having solved for the a's, equation (2.14) becomes;

a 1 + K I 3 = 0

a2 K K1w 3 = -3n 2Ksin 2Cosa 2/ r3 (2.19)

a 3  0

Consider the motion such that 0= = 0 and e3=-+0 3 t

where w3 = n( 1 + a) with a a constant representing the spin

rate about the C3 axis. Under these conditions the accelera-

tions a i = 0 and the external moments M. = 0. This represents

an equilibrium point with the C3 axis remaining perpendicular

to the orbital plane. Now if the satellite is perturbed from

this equilibrium state, there is no guarantee the motion will

return the satellite to this orientation. To determine the

stability of the satellite, state variables are defined such

that;

1 = 1 X2 = 02 x3  1 8 x4 = 2' (2.20)

Linearizing about the equilibrium point described above, using

10



equations 2.11, 2.*18, and 2.19, gives the perturbation

equations in state vector form;

JAI

where (2.21)

hence

01 0 0 1 1

()1 0 0 0 A1 02 (2.22)

2, A4 2 - 3 4  ()2

and

A1 A 12 A A 0
A1  1 4  A 21  A2 2  A 2 3  A 3  A4

A 1 3 =A 2  1

A31 V I~(e + K ,I + KE)

A 3 2 =-A 4 1 =P,1 (2.23)

A3  I ~ - 01- K I' + 93) -A 3

A 4 2  A A31 -3K/

This expresses the A matrix in terms of the variables1,i'

G3 and ~.The variables 0 and £'can be eliminated from the

matrix by noting equations (2.9) and (2.10). (03 can be

eliminated by noting the third of equation (2.14); a = 0

which when linearized Is;

+ 0~=constant (2.24)



let that constant be (a + 1 ), then;

e)=2 + v ) (2.25)

117aking these substitutions in the A matrix, the elements are

only functions of the variables and its derivative r'.

Additionally the elements depend upon K, a, and e, srecifically;

A AA A =A =A A, A11 12 = A1 4  21 22 23 - A3 3 = A4 4 = 0

1 13 A 24 1

A3 1 = ( 1 - e 2 )r - 4  - ( 1 +a)( 1 + K ( - e2) r-2

A 32 -2( 1 - e 2 )r-3r' = -A41 (2.26)

A3 4 = 2( 1 - e2 ) - 2 - ( 1 + a )( 1 + K ) = -A 4 3

A4 2 =A 3 1 -

FLOCUET THEORY

It is important to note the A matrix is periodic

with period T, that is;

A(7) = A( r + T ) (2.27)

where T is the period of one orbit. The stability of the

motion can now be analyzed using Floquet theory. Floquet

theory is used because the matrix A is a time periodic

12



function and does not lend itself to the same stability

analysis as that of a constant A matrix. The fundamental

matrix for this system must satisfy the matrix differential

equation;

01(r) = A rO , (2.28)

This D is one fundamental matrix of the system. Floquet theory

states that the 0(7) may be written in the form;

4(r) = P(r) e (2.29)

where P(r) is a periodic matrix with the same period as the

original system, and the matrix r is a constant matrix. It

is desireable to have the r matrix in diagonal form, (i.e.

Jordan form). This may be done by means of a similarity

transformation and a new fundamental matrix V is therefore

given by;

4,(7) = F(r) e (2.30)

F(r) is periodic such that,

F(7) = F( 7 + T) (2.31)

and J is the Jordan form of r .

Now returning to the form of equation (2.29) to write;

0 + T ) = P( r + T ) er( r + T ) (2.32)

13



but

P(r) = P( 7 + T ) (2.33)

therefore,

b( r + T ) P(r) err =s (r) eF T  (2.34)

or

-t r + T ) = b(7) C (2.35)

Here C is a constant matrix called the monodromy matrix. The

eigenvalues of the F matrix are called the characteristic

exponents, X.. The eigenvalues of C are called the character-

istic multipliers p. . By letting r = 0 the monodromy riatrix

can readily be found;

47'(o)4(T) = C (2.36)

If 4 is the principle fundamental matrix;

*(0) = I (2.37)

* can be solved numerically by recalling equation (2.28)

and given the initial conditions (2.37).

The eigenvalues of the monodromy matrix are related to the

characteristic exponents by;

X. = I ln i (2.38)
1 T

The stability of the system is determined by the character-

istic exponents. If all of the characteristic exponents are

14



less than zero the system is stable. If Just one of the

characteristic exponents is greater than zero the system is

unstable. For the case where the characteristic multipliers

are complex, the relationship between them and the character-

istic exponents is;

1

i= ( in ri + j arg p.i) (2.39)

where

here= Re(P)2 + Im(i)2 (2.40)

arg P= arctan( Im(pi)/Re(pi))

In this case all real parts of the characteristic exponents

must be nonpositive for stability. A positive real part

means the system is unstable.

The system stability can be determined from the monodromy

matrix, but the periodic solution matrix will be needed for

implementation of control. A solution to the original

system can be written as (3;234);

4( ' (v)4-(0) (o) (2.41)

where 1P is any fundamental matrix and 7(0) is the initial

condition vector, assumed given. Using the fundamental

matrix of equation (2.30), and taking its inverse gives;

Ii-I' (F) = eJ F-() (2.42)

where at r = O,

o.1.



-(0) e e0 F-1(0) -- F- (0) (2.43)

using this in equation (2.41);

J -1
7(v) = F(T) e F- (o)2(O) (2.44)

It is important to note that F( T + T ) = F(r). In terms of

the principle fundamental matrix x(r) may be expressed as;

()= *(T)4 (0) (0) (2.45)

Evaluating at r = T,

3(T) = $(T)-l (0)x(O) (2.46)

where from equation (2.36),

(T) ;-1 (0) = 4(T) I =4 (T) = C (2.47)

where C is the monodromy matrix. Evaluating equation (2.44)

at r = T and then equating to equation (2.46) gives;

F(T) eJT F-1 (0)7(O) = C7(0) (2.48)

or by rearranging,

F(T) e - C F(O) = 0 (2.49)

Since F(r) is periodic, F(O) = F(T) so equation (2.49)

becomes;

F(O) e - C F(O) = 0 (2.50)

16
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The matrix e JT is di3gonal and hence the individual columns

of the F(O) matrix can be written as;

pT (0) - C Ti(0) = (2.51)

JT
with Pi being the 'i'th diagonal element of e Equation

(2.51) may be recognized as a basic eigenvalue problem.

Written in a more familiar form;

II- C] T(0) = (2.52)

Hence the F(0) matrix is a matrix whose columns are the

eigenvectors of the monodromy matrix C.

Referring to equation (2.30) again, taking the derivative

of ik with respect to r gives;

Fl() e' + F(7) J e (2.53)

Since 4' is a fundamental matrix it must satisfy equation

(2.29), i.e.

= A(,) 0'(7) (2.54)

Using the expression for 4 and 4' in equation (2.54) gives,

F'(r) e~ + F(r) J e = A(,) F(,) e (2.55)

By cancelling out the eJ r terms and rearranging;

17



C" F' = AF - FJ (2.56)

This ecuation along with the initial condition matrix found

in equation (2.52) can be solved numerically for F(r).

Summarizing the steps to determine the stability of the

system;

are as folloors;

1) Determine the principle fundamental matrix 4 by numerically

integrating equation (2.26) with initial conditions

b(0) = I (2.37)

' A(t)@(,) (2.2F)

2) Determine the monodromy matrix C from equation (2.36)

-l!

- (o)$(T) = C (2.3E)

3) Find the eigenvalues of the monodromy matrix C,P, and

therefore the characteristic exponents X. by;1

= in (2.38)

If all the Xi have negative real parts the system is stable,

otherwise it is unstable.

Summarizinq the steps to determine the periodic F matrix

of equation (2.30) are as follows;

18



1) Find eigenvectors of the monodromy matrix from equation

(2.52). These form the initial conditions for the F matrix.

p I - C I TO) = U (2.52)

2) Solve equation (2.56) for F by numerically integrating.

F' = AF - FJ (2.56)

Now all elements of the general solution form of equation

(2.30) are known.

P(r) = F(,) eJT (2.3C)

where J is the Jordan matrix, (7;267).

Equations (2.28) and (2.56) can be solved numerically,

given the initial conditions. The elements of the F matrix

are needed as functions of 1 and since they are periodic, may

be stored as Fourier coefficients.

CONTROL THEORY

The modal control of linear constant coefficient systems

is well understood. The application of modal control for

linear periodic systems is however not well developed and is

the subject of this section. Consider a change of state

variables from x to a new modal variable ', given by;

( )= F(?) () (2.57)

19



where F(T) is the same matrix as in equation (2.30). Taking

the derivative of x with respect to r gives;

F'' + F' (2.58)

Substituting equation (2.57) and (2.58) into the original

system of equations (2.21);

F'i + F' = AFj (2.59)

By rearranging,

= F- AF 7 - F-1 F'_ (2.60)

Using equation (2.56) to change equation (2.60) to;

17' = IF-AF - F-1 (AF - FJ) j (2.61)

or,

= jFAF - F 1 AF + F1FJI (2.62)

and finally,

'7' = J'(2.63)

This represents a much easier system to deal with since J is

a constant matrix. If all the characteristic exponents are

real and distinct, J is set to have elements only on the main

diagonal. If this is the case, the system described by equa-

tion (2.63) reduces to n uncoupled ordinary differential

equations, hence the new v variables are called the modal

variables. Each ni represents a different mode. The stabil-

20



ity of one mode is independent of the other modes. In the

state variables each mode 7i participates in the overall

motion of the system. If the characteristic exponents are

complex, J is put in block diagonal form, with the imaginary

parts on the off diagonal. In this case two of the modes

become coupled and the differential equations become more

involved.

The feedback control term added to the basic system,

changes the mathmatical model to look like;

x" = A7 + BU (2.64)

where B is a feedback application matrix and U is the control

vector. Expressing this equation in modal variables yields;

_' = Ji + F- 1BU (2.65)

The B matrix is used to show which variables the control

is applied. The control matrix B has the general form;

0 0 ... 0

0 0 ... 0
B =(2.66)

b1 1 b1 2.. , bIn

b 2 1 b 2 2 .. , b2n

where the number of columns n is determined by the size of the

control vector U. The elements bij are determined by the

21
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physical implementation of the control. The control matrix

B has four rows because the state variable has four elements.

The control vector defines which variables are fed back

and how much is fed back, hence U is defined as;

U = K(,)-i (2.67)

where K(r) is a time dependent gain matrix of the form;

Kl ( r ) K1 2 (r) K 1 3 (r) K 1 4 (r)

K2,(r) K2 2 (r) K 2 3 (r) K 2 4 (r)K(T) = (2.68)

Kni 1 Kn 2 (r) Kn3 (r) Kn4(r)

The number of rows is an option of the desiqner and equals

the order of the control vector u.

For now a simple scaler control will be demonstrated,

(n = 1). The B matrix will assumed to be;

1 0(2.69)

-11

Then the control term F- BU of equation (2.65) becomes;

f11  f1 2 f13 f1 4  0 [K 1 K2 K3 K, J '
f 0

F3Bu f 21 1 (2.70a)

f41 f4 4 L1 J
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or

f13 + f14

f43 + f44 (2.70b)

where f lJ represents the elements of the F inverse matrix. ~

Further multiplication and insertion into equation (2.65),

where R i  f f13 + fi14 1 gives;
K Ru +X KRK K R K4RI

K R K + X RK

1IR 2  K2 2 + 2  K3R 2  K4R

K1R 3  K2R 3  K3R 3 + X3 K4R3 (2.71)

LKI1R 4  K 2 R4  Ks3R 4  K 4R 4 + X 4 1

This represents the controlled system using scaler control.

Suppose one mode is unstable, for example X 1 is positive.

By choosing K 2  3 = K4 = 0, equation (2.71) reduces to;

Ki(f13 + f14 + x1 0 0 0

KR (f + f X 0 0

V 1 2 24 3 2  K

K1 (f33 + f3 4 ) 0 X3 0 (2.72)

K1(f43 + f344 )  0 0 X4

Thus theree the modes remain the same, and the unstable

mode can be changed by proper selection of Kispiv

The d i ffe r e ntial equation for the first mode is;

lK(,) (f (7) + fl4,) + X, ll (2. 73)

1 (i 13 14X 0

23
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Using an integrating factor,

M = exp 40 (X1 + K1 (t)(f 1 3(t) + f14 (t)))dtj (2.74)

the solution of (2.73) is given by;

1= 1 expjf0 ( C + R(t))dtI (2.75)

where here n'1 is the initial value of 7 1 , C is the constant

part of the exponential of equation (2.74), and the term

R(t) is the time varying part. Now by letting K1 be a constant,

and expressing the components of F inverse in Fourier series

form, with a constant and a time periodic part, equation (2.75)

reduces to ;

e1 710 C (2.76)

with

C = X1 +aK 1  (2.77)

where a is the constant part of the Fourier series. Hence

by appropriately selected K such that C is less than zero

the stability of mode one is guaranteed.

Now suppose there is no constant part of the Fourier

series, or that it is too small to be realistically fed

back by a constant K. In this case a time varying gain can

be used to control the system. The integrating factor of

equation (2.74) shows a K(7) times a Fourier series. Suppose

the first cosine term of the Fourier series is large enough

to modify the mode. A constant part can be created by making

24
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the gain;

) o 0- (2.78)

where K is constant. When this is multiplied by the

Fourier series representation of (f13 + f1 4 ) it gives;

l(,r)(fl3 + f14 K1 a 0 + aTCos T +

4,r 2 T 4y
a 2 cOs -T + ... + 1 sin T + 0 2 sin -- + ...

(2.79)

or

K (-r)(fl + f14 a aKlo°s + alKlo s2 T" + -m1 13 14 01 0 T a1K1 0T

2rK 4r +2

a 2 K + COS (2.80)

rearranging the second term in equation (2.80);

2 21? 1 4wr
a K Cos 2 aK 1 ( 1 + cos Tw

(2.81)

Therefore the constant part of equation (2.75) becomes;

C = + a Ko (2.82)

Since the rest of the time periodic terms integrated over

the period still equals zero, the stability can again be

insured by selecting the appropriate K to be used with the

time periodic gain. Of course any sine or cosine function
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p..

can be used depending on the Fourier coefficient the designer

wishes to use. The form of equation (2.82) remains the same.

Now suppose there are two unstable modes in equation (2.71).

A scaler control may again be used but the problem becomes

more involved involved. Suppose further that the unstable

characteristic exponents are complex conjugates. Applying

the scaler control equation (2.71) becomes;

"K (f13 + f14 + K 2(f13 + f14 ) + 0 0 0

K1 (f2 3 + f2 4 ) - K 2 (f2 3 + f2 4 ) + 0 0

K1 (f3 3 + f3 4 ) K 2 (f3 3 + f3 4 ) X3 0

K1 (f4 3 + f4 4 ) K 2 (f4 3 + f4 4 ) 0 X4

(2.83)

where e is the real part of the complex conjugate and w is

the imaginary part. Again the stability of modes n 3 and 114

are unaffected. The n and '12 differential equations are;

11 = (K1 (f1 3 + f1 4 ) + a) '1 + (K 2(f 1 3 + f1 4 ) + 2) 2

(2.84)
= -(Kl(f 2 3 + f 2 4 ) -') '1 + (K2 (f2 3 + f 2 4 ) + u) 2

Unfortunately this set of equations does not lend itself to

the same method of analysis as the last case. That is, an

integrating factor has not been found to solve this set of

equations and thus determine what values of KI and K2 will

guarantee stability. However equation (2.84) can be written

as a periodic linear system;

= x(t) 7 (2.85)
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and then a theorem from Floquet theory, which states (3;236),

Pl 2 = expi fT tr fX(s) ds (2.86)

can offer some help. Here #i are the characteristic multi-

pliers and tr(X) is the trace of the X matrix. Taking the

log of both sides gives;
T

In(P 1 P2 ) = f tr I X(s)I ds (2.87)

from equation (2.84) the trace of the matrix is;

tr IX(s) I = K1 (f1 3 + f1 4) + K 2 (f23 + f2 4 ) + 2a (2.88)

or breaking it up into constant and periodic parts,

tr IX(s)I (K1a1  + K 2a2 1 + 20) + R(r) (2.89)

where the second subscript on the a's represents the coef-

ficient of the Fourier series term yielding a constant part.

These are determined by the form of the gains K 1 and K2.,

Integrating the periodic part over one period reduces to

zero while the constant part leaves;

ln(P.i2 ) = (K1a i + K 2a 2 j + 2o)T (2.90)

or by rearranging,

1 ln(p 1 p 2 ) P ,lnP 1 + -lnp2 - Klali + K2 a2  + 2o (2.91)

where 1/T ln P is recognized as the characteristic exponent
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hence,

1 + X 2 = K1aii + K2 a 2 j + 2u (2.92)

Equation (2.91) does not predict the value of the indivd-

ual characteristic exponents X and X but rather, only
1 2' b

their sum. Naturally their sum needs to be negative for

stability, but making their sum negative does not guarantee

that both values will be negative. It is deireable to be

able to predict what values of K1 and K2 will guarantee both

modes becoming stable, but as of yet this is not possible.

The best that can be done, using scaler control, is to use

the method described, to help search for gains that will

result in a stable system.

There is a method that will predict the value of the

controlled characteristic exponents. This method uses a

multiple input controller, which enlarges the B and K matrices

of equation (2.70). The following is a demonstration of a

multiple input control system used to control two unstable

modes. First let the B matrix be,

0 0"

0 0
B= (2.93)

1 0

O 1

and the K matrix;

kll K1 2 3  K2 4

K [K1 K1 2  K1 3  14 (2.94)
K21 K22 X23 K24
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Hence,

0 0 0 0

F-1 BK =F_ 0 0 0 0F BK~ =I~I K 2  77 (2.95)

KI1 K K K 4

K21 K22 K23 724

Therefore the contolled system becomes,

K f + K + K f + K2f + 0 0
11 13 21 14 K1 2 1 3  K2 2 14

K 11 f23 + K21 f24 K 12 f23 + K22f24 + 0 0

K1 1 f3 3 + K2 1 f34 K12 f33 + K22 f34 x3 0

K if + K!f K f + K 0 X~
1143 21f44 12f43 22c44 4

(2.96)

where setting K13 = K23 = K1 4 = K24 = 0 gives the above

result. Since the stability of the X 3 and X4 modes is not

affected by the control, the stability of the controlled

and X2 is determined by the solution to;

f K 11 f13 + K 21if 14 +01 K i2f 13+K 22 f 14 f~i
12 K1 1 f 2 3 + 2 1 f 2 4 -w 1 2 f 2 3 +K 2 2f 2 4 +o 2

(2.97)

To determine the values of the K's that will guarantee stab-

ility of the system, first set the off diagonal terms to zero.

This uncouples the two modes and results in,

K 1 1 f2 3 + K2 1 f 2 4 =
(2.98)

K12f13 + K2 2 f1 4 = -

solving for K1 1 and K1 2 gives,

29



K K21 f24)/f23) (2.99)

K12 - K22f14)/f13)

Next, set the diagonal terms to desired constants 'a' and

'b'

or+ K f + K f ~a
11 13 21 14 (2.100)

+ K1 2f 2 3 + K2 2 f 2 4 =b

solving for K21 and K22 yields;

K = [(a ) K 1 f 1 3 /f 1 4 (2.101)

22 = - - K 1 2 f 2 3 2 4

Using equation (2.99) in equation (2.101) gives the K's as;

Wf 1 4 - (a - a)f24K 1( ) f
f14f23 -13f24

K1 2 ('r) -Wf24 - (b - )f14
f 13f24 f f14 f23

(2.102)

(a - a )f2 3 - Wf 1 3
K2 1 (T) ..

14f23 13f24

(b - a)f 1 3 
+  f

K22(- ) . . .
f13f24 - f14f23

These K's are time varying and can be expressed in Fourier

series form. Thus the K matrix with the above values of K

and the B matrix of equation (2.93) gives the final system;
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a 0 0 0

0 b 0 0
3 1 (2.103)

o 0 x3 0
0 0 0 x 4

where a anid b are selected to be negative and thus stable.
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CHAPTER 3

RESULTS

In this chapter the results of various examples using

the theory from the last chapter will be presented and

explained. These examples were done using various computer

programs to solve for the equations given in the theory

chapter. These programs also assisted in selecting the con-

trol system to be used, implementing the control, and simula-

ting the results. Presented first is a listing and classifi-

cation of the stability parameters for various uncontrolled

satellite configurations. Next the results of using scaler

control to control a system with two unstable modes, is

presented. Finally the case of two unstable modes is solved

using the multiple input control.

PARAMETER SPACE K vs a

The basic system was expressed in the linear form;

= A(?)" (3.1)

where A(t) is a periodic matrix whose elements are given by

equations (2.26). These elements are functions of the param-

eters K, a, and e. Hence the stability is uniquely determined

by the given values of these three parameters. In the article

by Kane and Barba (4;405) a parameter space is shown of K
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verses a for various values of eccentricity. In this study

a plot of K verses a was made using an eccentricity of 0.5.

The plot originates from a listing of the characteristic

exponents for each pair of K and a coordinates, and also a

classification of the stability represented by those char-

acteristic exponents. These results are listed in Table 3.1.

The system is stable if all real parts of the characteristic

exponents are less than zero. There are many cases where the

real part is equal to zero, or very close to zero, these cases

are considered stable since this represents motion that is

not increasing without bound. The zero real part is due to

the conservative nature of the system. When the characteristic

exponents are complex, the motion will be oscillatory with the

freqency of oscillation dependent on the size of the real and

imaginary parts. The damping of the system is the negative

of the real part divided by the natural freqency of the system.

Hence if the real part is negative the damping is positive and

the motion dies out in time. If the real part is positive the

damping is negative and the motion increases with time. The

size of the real part determines how fast the motion either

increases or decreases. For example, a large positive real

part causes the motion to increase faster than a small posi-

tive real part.
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Some paterns from Table 3.1 can be recognized as to the

stability dependence on the parameters K and a . Specifically

the real part of the characteristic exponents approaches

zero as the K approaches zero, from either the positive or

negative direction. This means the instabilities become less

severe. When K equals zero the satellite has the same moments

of inertia in all three axes, (i.e. J=1 in equation (2.15)).

When K equals -1.0 the stability is independent of the spin

rate. This case corresponds to J equalling zero, which is

not realistically possible. When J is nearly zero the mass

of the satellite is distributed very close to the satellite

spin axis. For other values of K, the larger the spin para-

meter, either positive or negative, the instabilities become

smaller.

From Table 3.1 many of the characteristic exponents are

in similar form. The only cases that are stable are those

where the real parts all equal zero. The most prevalent

unstable case is the one involving two pair of complex con-

jugates; one set with a negative real part (stable), the

other set with positive real part (unstable). Another type

of instability is the set with a stable set of complex con-

jugates and two purely real characteristic exponents; one

stable and one unstable. An example of this case is when

K = 0.8, and a = -1.0. The third type of instability is when

all the characteristic exponents are real with two of them

less than zero, and two of them greater than zero. A few of

these cases have been difficult to work with due to the
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numerical problems in obtaining a periodic solution matrix.

Therefore the characteristic exponents in some of these third

cases may be erroneous.

These different cases are summarized on Figure 3.1, where

the 'o' represents a stable case, 'S' means single unstable

mode, 'C' means complex conjugates unstable case, and 'D'

represents the dual real unstable case.
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CASE STUDY UNCONTROLLED

Yeakel presented the case of one unstable mode along with

a technique to control such a case. A scaler control is

adequate for changing this one unstable characteristic

exponent to a nepative value with predictable results. From

the parameter space of Figure 3.1 it is obvious that the major-

ity of unstable cases involve two unstable modes. As explained

in the theory chapter a scaler control can not predict where

these two unstable characteristic exponents will move.

The stability cannot be insured using a scaler control.

The only method to date has been to use the relationship be-

tween the sum of the characteristic exponents and the integral

of the trace of A(r) in searching for an acceptable set of

gains to be fed back. The case study being looked at has

parameters K = 0.7 and a = 1.0, (e = 0.5). This case represents

the most common type of instability, but the methods used to

control this case along with the results, are applicable to

other similar cases, and to cases where the unstable character-

istic exponents are purely real. The characteristic exponents

for this case are, (uncontrolled);

S1,2 = 0.0177 +1- J0.3667 unstable

= -0.0177 +/- J0.3667 stable

3,4 -. 17+

The motion of the uncontrolled system is shown in Figures
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(3.2) thru (3.10). Figures (3.2) thru (3.5) show the motion

of the state variables, defined in equation (2.20). Figure

(3.6) shows the motion of the angle 0, which is the angle

between the satellite spin axis and the orbit normal, and is

defined by;

0 = arccos( cose1 cose2 ) (3.2)

Figures (3.7) thru (3.10) shows the motion of the modal vari-

ables defined by equation (2.57). The modE' variable motion

can be predicted directly from the characteristic exponents.

The state variable motion is a combination of all the modes.
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CASE STUDY SCALER CONTROL

From Floquet theory of chapter 2, a solution to the

linear system of equation (3.1) is given by;

(v) = F( T )eJV (3)

where J is given by,

0.0177 0.3667 0.0000 0.0000

-0.3667 0.0177 0.0000 0.0000
J = (3.4)

0.0000 0.0000 -0.0177 0.3667

0.0000 0.0000 -0.3667 -0.0177

The periodic F matrix was found by computer programs which

expressed it in Fourier series form. Each element of this

4x4 matrix has 31 cosine terms and 29 sine terms representing

its function. A typical element is,

f 11() = 0.00 - 0.3239 cos(2r,/T) + 0.00 + 0.0688 cos(6rr/T)

+ ... + 0.0004 cos(60r,/T) - 0.1259 sin(2wr/T)

+ 0.00 - 0.0326 sin(6rr/T) + ... +

0.00001 sin(58it/T)

where T is the period of the orbit.

Using scaler control puts equation (2.65) into the form of

equation (2.83). Controlling the unstable modes reduces

equation (2.83) to the 2x2 system of equation (2.84). The
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trace of the matrix of this 2x2 system, used in equation

(2.86), is given by;

X 1 + X 2 = 2. + K1 (f1 3 + f14) + K2 (f 2 3 + f 24 )  (3.5)

where the f values in equation (3.5) are the Fourier coeffic-

ients of the terms which yield constant parts. For this case

the zeroth cosine terms (the constant parts) of the Fourier

series are too small to be adequately amplified for contrcl.

However the first cosine coefficients are;

f13 = 0.0 - 1.0027 cos(2rr/T)

f 014 = 0.0 + 0.2689 cos(2rr/T)

f23 = 0.0 + 0.2919 cos(2T?/T)

f24 = 0.0 + 0.1128 cos(21Tr/T)

Making the gains time periodic fuhctions such that,

K(r) = G1 cos(2rr/T) (3.7)

K 2 (,) = G2 cos(27r,/T)

where the G's are the constant gain values yet to be deter-

mined. Now using equation (3.7) and (3.6) in equation (3.5)

the constant terms become;

= A1 + >'2 - 2(0.0177) + G 1 (-0.3669) + 2 (0.2024)

(3.8)
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Rearranging the terms in equation (3.8) to express the gains

in a ratio gives;

0 = 0.0354 + G1(-0.3669 + 0.2024(G 2/C-1 )) (3.9)

The form of equation (3.9) allows a specific pain ratio to be

selected and then a value of G to be varied to achieve desired

values of 1, the sum of the controlled characteristic expo-

nents. As an example, for the ratio of R = -3.0, if ' 1 = 1.0

then G2 = -3.0. From equation (3.9) Q becomes,

0.0354 + (1.0)(-0.3669 + 0.2024(-3.0)) = -0.9387

Using Floquet theory the new characteristic exponents of the

controlled system are,

= -0.6883 X 2 = -0.2485

where the sum of these characteristic exponents is -0.9368.

These values show the system has been stabilized, and since

they are purely real there is no oscillation in these modes.

There is still oscillation in the other set of stable char-

acteristic exponents, henee the angle 0 oscillates as shown

in Figure (3.11). For the same ratio R = -3.0, if G 1 = 0.6

then G2 = -1.8 and the predicted sum would be -0.5491 and

the new characteristic exponents are,

X 1,2 = -0.2742 +/- J0.1432
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where the sum is -0.5484. The plot of 4 for this cor.,,bination

of gains is shown in Figure (3.12). Here there are more

oscillations due to the imaginary part of the new character-

istic exponents. These two cases both exhibit stable behavior.

However, in general for cases such as these, stability is not

assured and each case must be evaluated.

By varying the G for specific ratios, a locus of character-

istic exponents can be plotted. For different ratios these

plots represent a family of curves. These are shown for the

case being studied in Figures (3.13) thru (3.18). Note that

all curves originate at the unstable uncontrolled character-

istic exponents. As the gain is increased from zero, the

locus cross the imaginary axis and become stable. This cross-

over occurs when the trace of the 2x2 system is equal to zero.

The locus then breaks in at some point on the real axis and

splits, one branch heads toward negative infinity, and the

other branch heads toward the origin. This break in point is

very important because it can be thought of as the most stable

placement for the controlled characteristic exponents, as will

be seen. From Figure (3.13) the break in point for a ratio

of 0.5 occurs around -0.02, and from Figure (3.16), the ratio

of -10.0, the break in point is around -0.35. If the charact-

eristic exponents lie anywhere in the left half plane, they

represent a stable configuration. Obviously the closer they

are to the real axis, the less the oscillation, and the further

they are from the imaginary axis the quicker the motion dies

out. The break in point is the point that is furthest from the
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imaginary axis and closest to the real axis for both sets of

controlled characteristic exponents.

CASE STUDY MULTIPLE INPUT CONTROL

The scaler control used to stabilize a system with two

unstable modes is desireable due to the simplicity of the feed-

back gains used. However since there is no way to accurately

predict the placement of the controlled characteristic expon-

ents, another method is needed. The multiple input control

system provides more predictable results. Again controlling

the unstable modes results in the system described by equation

(2.97). The time varying gains were found using equations

(2.102). These gains are expressed as Fourier series. The

new characteristic exponents were chosen to be;

X 1 = -0.75 N2 = -0.50 (3.10)

A computer program found the Fourier series for the gains

K1 1 , KI12 , K 2 1 , and K 2 2 that would result in the characteristic

exponents of equation (3.10). An example of the time varying

gains is;

KII(,) = -1.243 cos(2rr/T) + 0.625 cos(6rr/T) +

-2.742 sin(2wr/T) - 0.111 sin(6r,/T) (3.11)

where T is the period of the orbit. A summary of the gain
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Fourier coefficients for this case is listed in Table (3.2).

The gains given in this case yield the new characteristic

exponents of;

S -0. 7685 X2 -0.4777

where the error from the predicted values, is due to the nurm-

ericPl inaccurecies of the colputer. More accurate results

would have been achieved if the Fourier series had been taken

to more coefficients. The 0 plot for this set of gains is

given in Figure (3.19).

17ow if the new characteristic exponents were desired to be

at;

X = -2.00 X = -1.501 2

the Fourier series of the gains would be as listed in Table

(3.3), and the resulting characteristic exponents would be at;

X = -2.225 X2 = -1.319

The * plot for these gains is shown in Figure (3.20).
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TABLE 3.2 - GAIN FUNCTION FOR MULTIPLE CONTROL CASE 1

10 10
K Cr) = Z An cos(2(n-l)rr/T) + Z Bm sin(2mxr/T)

n=! m=1

K1 1  K1 2  K21  K2 2

cosine
terms;

A1  0.8419 E-7 0.6213 E-7 0.1670 E-7 0.3438 E-8

A -1.2429 -0.6862 -0.5508 E-1 -1.1693

A3 -0.5849 E-7 -0.1414 E-7 0.6755 E-7 0.1566 E-7

A 4  0.6248 1.3368 1.4945 -0.2849

A5  -0.5868 E-7 -0.4116 E-7 -0.8632 E-7 -0.9058 E-7

A6  1.4044 1.6458 1.6669 -0.2662

A 7  -0.1008 E-6 -0.5761 E-7 0.3726 E-7 0.5176 E-8

A 8  -1.2509 -0.3723 0.5329 -0.4886

A9  0.1498 E-6 0.1258 E-6 0.2521 E-7 0.2693 E-8

AIO -2.1042 -0.6031 -0.3944 -0.6961

sine

terms;

B1  -2.7417 -1.6274 -0.3833 E-2 0.2135

B2  0.1118 E-6 0.8622 E-7 0.6379 E-7 0.4292 E-7

B3 -0.1112 -0.1777 -1.5967 -1.2184

B4  0.2076 E-7 0.1988 E-7 0.1357 E-7 0.1058 E-7

B5  -0.3721 0.2358 2.0491 0.9833

B6  -0.1006 E-6 -0.9000 E-7 -0.5690 E-7 -0.4547 E-7

B7  3.2091 1.5700 0.2321 E-1 -0.1490

B8  -0.5102 E-7 -0.2927 E-7 -0.2555 E-7 -0.2070 E-7

B9  -2.3053 -0.8608 0.7180 -0.3420 E-1

B 1 0  0.9814 E-7 0.7360 E-7 0.5153 E-7 0.4196 E-7
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TABLE 3.3 - GAIN FUNCTION FOR MULTIPLE CONTROL CASE 2

10 10
Kj(') =nZ An cos(2(n-l)rr/T) + Z Bm sin(2mxr/T)

n=1 m=1

K1 1  K12 K21 K22

cosine
terms ;

A1 0.2403 E-6 0.1500 E-6 0.4410 E-7 0.4434 E-8

A2  -3.4555 -1.5559 -0.6102 -3.3138

A3 -0.1553 E-6 -0.2150 E-7 0.1791 E-6 0.2293 E-7

A4  2.1350 3.6081 3.7095 -1.2916

A5  -0.1667 E-6 -0.9843 E-7 -0.2572 E-6 -0.2303 E-6

A6  4.2537 4.2380 4.1580 -1.2936

A -0.2811 E-6 -0.1318 E-6 0.9740 E-7 0.2793 E-8
7

A8 -3.3500 -0.6592 1.1674 -1.5632

A9 0.4338 E-6 0.3102 E-6 0.6560 E-7 -0.4223 E-9

A1 0  -5.6257 -1.0427 -1.3700 -2.4263

sine
terms;

B1  -7.6279 -3.4714 0.7585 E-1 0.6094

B 0.3208 E-6 0.2097 E-6 0.1804 E-6 0.1018 E-6
2

B3  -0.3559 -0.4705 -4.5742 -2.9586

B4  0.6108 E-7 0.4998 E-7 0.3896 E-7 0.2578 E-7

B5 -0.8576 0.7912 5.6375 2.1437

B6  -0.2935 E-6 -0.2241 E-6 -0.1689 E-6 -0.1106 E-6

B7  8.8409 3.4427 -0.3819 E-3 -0.4319

B8  -0.1422 E-6 -0.6702 E-7 -0.7368 E-7 -0.5076 E-7

B9  -6.2437 -1.7123 1.8233 -0.3279

B1 0  0.2806 E-6 0.1782 E-6 0.1487 E-6 0.1030 E-6
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CHAPTER 4

CONCLUSIONS

There are some important conclusions which can be drawn

from the results presented in the previous chapter. Foremost

is the contrast between the scaler control and the multiple

input control. The use of these two control schemes in

simultaneously moving two unstable characteristic exponents

was demonstrated in the results section. The problem of

moving two roots simultaneously is of particular importance

to satellite designers, due to the number of cases where two,

or more, unstable modes exist. In this study the case where

there are two unstable modes was shown to outnumber the cases

of one unstable mode. It would be overly restrictive to

limit satellite designs to only those cases of zero or one

unstable mrde. In cases with multiple unstable modes a

scaler control may be applied repetitiously to control a

single mode at a time. This involves applying a scaler con-

trol to the original system to take care of one mode, then

forming a new "semicontrolled" system to which another scaler

control is applied. This process is continued until all modes

are controlled as desired. The problem here is that the

numerical difficulties quickly make this scheme unworkable.

The primary emphasis of this study has been to develop a

workable scheme to control a periodic system with two unstable

modes. From the results presented it is obvious the two types

of controllers offer significant differences in achieving
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this control. The scaler control works with simple workable

feedback gains, but does not offer predictable results. The

multiple input control system offers predictable results as

to the placement of the new stable characteristic exponents,

but requires complicated gains which are time dependent. The

greater the accuracy desired in the placement of the charact-

eristic exponents, the more complicated the gain time functions

become. These complicated gains are unavoidable in the multiple

input controller. Therefore the problem becomes, how to predict

the placement of the characteristic exponents using the scaler

control.

The only clue in predicting the results of the scaler

controller comes from the relation between the characteristic

exponent's sum and the trace of the matrix defining the sys-

tem. Through the use of the theorem given by equation (2.86)

a locus of controlled characteristic exponents was plotted.

From this plot there can be found a breakin point, unique

for a given gain ratio. If this breakin point can be predicted

the problem will be effectively solved. Also from these plots

it is obvious that some optimum ratio exists that gives the

most negative breakin point for the system. As was discussed

the breakin point can be thought of as the most stable con-

trolled point. More negative values of one characteristic

exponent can be achieved, but it requires the second charact-

eristic exponent to be less negative. Hence the breakin point

for the optimum ratio represents the most desireable location

of the controlled characteristic exponents. As of yet there

is no clear way to predict breakin points or even the optimum.
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ratio.

If a less specific solution is desired, that is one that

is simply stable and not necessarily the most stable, ther.

the imaginary axis crossings must be predicted. For cases

similar to the one presented, ( that is one with negative

breakin points), the first imaginary crossing, as the gain

is increased from zero, occurs when the sum computed from

the trace theorem, is equal to zero. The second crossover

occurs as one branch heads toward the origin after breaking

into the real axis. This crossover was difficult to find

using computer numerical integration. Whether a crossover

actually occurs at the origin is still unclear. These two

crossover points define the region where the system is

guaranteed stable.
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